[1,5] Sigmatropic Shifts in a 1,4-Diphospholylbenzene

François Mercier and François Mathey*

Laboratoire de Chimie du Phosphore et des Métaux de Transition, DCPH, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Received 22 September 1989.

ABSTRACT

The central phenylene ring of 1,4-bis(3,4-dimethylphosphol-1-yl)benzene undergoes [1,5] shifts around both phospholyl rings above 150° C to give 1,4-bis(3,4-dimethyl-5H-phosphol-2-yl)benzene, which can be trapped by tolane, $[CpFe(CO)_{2}]_{2}$, or Mn_{2} (CO)₁₀ to yield the corresponding bis-1-phosphanorbornadiene, bis-phosphaferrocene, or bis-phosphacymantrene respectively.

In several previous papers [1-5], we have demonstrated that a 1-phenyl substituent could migrate from the phosphorus atom to the carbon atoms of a phosphole ring via a series of [1,5] sigmatropic shifts (Equation 1). These relatively easy migrations can be correlated with the pyramidal structure of the phosphole nucleus. The pyramidality of phosphorus reduces the cyclic delocalization within the 1-*H*-phosphole system and allows some overlap between the π -dienic system and the σ orbital of the P—C exocyclic bond [6].

Recently, we became interested in all the possible techniques for building polyphosphole structures in order to create new polyphosphorus macrocycles, cages, and chains. Up to now, we have only been able to synthesize 2,2'-biphospholes [2, 7]. In such a context, it was tempting to link together two phosphole rings via a *para*-phenylene bridge and to check whether it would be possible to promote the [1,5] sigmatropic shifts of the *para*-phenylene substituent around both phosphole rings of 1 in order to create new species derived from the original C—C bonded tricyclic structure 2 (Equation 2). The starting phosphole 1 was obtained by reaction of the recently discovered 1-cyano-3,4-dimethylphosphole 3 [8] with 1,4-di-

^{*} To whom correspondence should be addressed.

lithiobenzene [9] (Equation 3). As expected, the NMR parameters of 1 are very close to those of 1phenyl-3,4-dimethylphosphole [10]. Upon heating with tolane at 160°C for 16 h, phosphole 1 is converted into the expected 1-phosphanorbornadiene 4 (Equation 4).

The formation of 4 unambiguously demonstrates the existence of the equilibrium depicted in Equation 2. The transient 2*H*-phosphole 2 is trapped by tolane to give the corresponding [4 + 2]cycloadduct as already shown for monocyclic phospholes [1]. The high yield of 4 establishes the practical usefulness of this kind of chemistry. It is interesting to remark that the main decomposition path of 4 in the mass spectrometer is the cycloreversion leading to 2.

When heating a 1-phenylphosphole with Mn_2 (CO)₁₀ or [CpFe(CO)₂]₂ under a stream of argon, the normal reaction path involves the cleavage of the P—Ph bond and the formation of the corresponding η^5 -phospholyl complex [11,12] (Equation 5). When repeating the same experiment under CO pressure, the loss of CO leading to the η^5 -complex becomes more difficult and the [1,5] shift of the phenyl group competes with the cleavage of the P—Ph bond by the organometallic reagent. In such a case, the main product becomes the η^5 -2-phenyl-phospholyl complex [4,7] (Equation 6).

In an attempt to generalize this kind of chemistry to our biphosphole, we allowed 1 to react with $[CpFe(CO)_2]_2$ at ca. 150°C under the autogenous pressure of CO (Equation 7). The main product was the bisphosphaferrocene 5 resulting from the η^5 complexation of the transient 2*H*-phosphole 2. 3,4-Dimethylphosphaferrocene 6 resulting from the cleavage of the P-aryl bonds of 1 was also formed. The molar ratio 5/6 was ca. 2/1. The NMR parameters of 5 are strikingly similar to those recorded for 2-phenyl-3,4-dimethylphosphaferrocene [12]. This kind of chemistry could be transposed to Mn₂ (CO)₁₀ using a higher pressure of CO (Equation 8). Here again, the molar ratio 7/8 was ca. 2/1. As ex-

pected, closely similar NMR parameters were found for 7 and 2-phenyl-3,4-dimethylphosphacy-mantrene [7].

If we summarize this first series of results, two general facts must be stressed. Firstly, the 1.4-disubstitution of the central phenylene ring is retained during the migrations. For each product, one type of phenylene protons and two types of phenylene carbons are observed in the ¹H and ¹³C NMR spectra. This is the expected consequence of the concertedness of the [1,5] shifts. Secondly, one main isomer is formed in each case. The other possible isomer resulting from the presence of two chiral phosphorus centers has been detected with certainty only in the case of 7 and represents ca. 20% of the total amount of product. Since this chemistry is selective and proceeds in reasonable to high yields, it offers some interesting synthetic opportunities, which we are currently exploring.

EXPERIMENTAL

All reactions were performed under argon. Nuclear magnetic resonance spectra were recorded on multinuclear WP 80 SY and AC 200 Bruker spectrometers operating at 80.13 and 200.13 (¹H), 20.15 and 50.32 (¹³C), and 32.44 (³¹P) MHz. Chemical shifts are in parts per million downfield from internal TMS (¹H and ¹³C) and external 85% H₃PO₄ (³¹P), and coupling constants are in Hertz. Mass spectra were recorded on a Shimadzu GC-MS QP 1000 instrument at 70 eV under electronic impact. Elemental analyses were performed by the Service Central de Microanalyse du CNRS, France. Silica gel (70–230 mesh) was used for the chromatographic separations. All commercially available reagents were used as received from the suppliers.

1,4-Bis(3,4-dimethylphosphol-1-yl)benzene 1

1-Cyano-3,4-dimethylphosphole **3** was prepared in toluene-THF from 3.8g (2×10^{-2} mol) of 1-phenyl-3,4-dimethylphosphole according to [8]. 1,4-Dilithiobenzene (1×10^{-2} mol) was prepared in hexane according to [9]. The solution of 1,4-dilithiobenzene was slowly added to the crude solution of **3** at -70° C. The reaction mixture was warmed to room temperature. The solvent was evaporated. The residue was extracted with dichloromethane. The CH₂Cl₂ solution was washed with water and dried with Na₂SO₄. After evaporation of the solvent, the organic residue was chromatographed, first with hexane/CH₂Cl₂ 95/5 and then, with hexane/CH₂Cl₂ 80/20. Phosphole 1 was recovered as white crystals mp 162°C (hexane/ CH₂Cl₂). Yield 3.3g (55%).

³¹P NMR (CD₂Cl₂): δ -3.4; (C₆D₆): δ -5.0; ¹H NMR (CD₂Cl₂): δ 2.08 (dd, ⁴J(H—H) 0.88 Hz, ⁴J(H—P) 3 Hz, 12H, Me), 6.42 (dd, ²J(H—P) 38.6 Hz, 4H, ==CH—P), 7.19 (m, 4H, Ph). The multiplet at 7.19 collapses to a singlet upon irradiation of phosphorus, thus demonstrating the 1,4-disubstitution of the arene ring. ¹³C NMR (CD₂Cl₂): δ 17.76 (s, Me), 129.50 (s, CH(Ph)), 132.89 (d, ¹J(C—P) 7.1 Hz, C ipso or CH—P), 133.27 (d, ¹J(C—P) 6.9 Hz, CH—P or C ipso), 149.79 (d, ²J(C—P) 8.4 Hz, Me-C); mass spectrum: m/z 298 (M⁺, 100%); Anal. Calcd. for C₁₈H₂₀P₂: C, 72.55; H, 7.10; Found: C, 72.34; H, 7.19.

1,4-Bis(3,4-dimethyl-5,6-diphenyl-1phosphanorbornadien-2-yl)benzene 4

Phosphole 1 (0.6g, 2×10^{-3} mol) and tolane (1.1g, 6×10^{-3} mol) were heated in a sealed tube at 160°C for 16 h. The crude product was dissolved in CH₂Cl₂. The extract was chromatographed with hexane/CH₂Cl₂ 50/50. Yield 1.1g (82%) of white crystals mp 186°C (hexane/CH₂Cl₂ 20/80).

³¹P NMR (CDCl₃): δ –11.3; ¹H NMR (CDCl₃): δ 1.34 (s, 6H, Me), 2.08 (s, 6H, Me), 2.03–2.27 (m, 4H, CH₂P), 6.94–7.33 (m, 24H, Ph); ¹³C NMR (CDCl₃): δ 16.11 (s, Me), 21.15 (s, Me), 65.09 (s, CH₂-P), 72.62 (s, Me-C₄) [13]; mass spectrum: m/z 654 (M⁺, 5%), 476 (M⁺-Ph₂C₂, 36%), 298 (M⁺-2Ph₂C₂, 100%); Anal. Calcd. for C₄₆H₄₀P₂: C, 84.22; H, 6.16; P. 9.62; Found: C, 83.55; H, 6.07; P, 9.50.

1,4-Bis(3,4-dimethylphosphaferrocen-2-yl) benzene **5**

Phosphole 1 (1g, 3×10^{-3} mol), [CpFe(CO)₂)₂ (1.1g, 3×10^{-3} mol), and toluene (25 mL) were heated at 150°C for 3 h in an autoclave. After evaporation, the organic residue was chromatographed with hexane/CH₂Cl₂ 80/20. 3,4-Dimethylphosphaferrocene **6** was first eluted with ferrocene (ca. 0.3g). Then, **5** was recovered (0.4g, 25%) as orange crystals, very sensitive toward oxidation.

³¹P NMR (CD₂Cl₂): δ -73.7; ¹H NMR (CD₂Cl₂): δ 2.26 (s, 12H, Me), 3.86 (d, ²J(H—P) 36.6 Hz, 2H, CH—P), 4.17 (s, 10H, Cp), 7.20 (s, 4H, Ph); ¹³C NMR (CD₂Cl₂): δ 15.32 (s, Me), 17.32 (s, Me), 73.21 (s, Cp), 77.21 (d, ¹J(C—P) 58.9 Hz, CH—P), 92.38 (s, *C* Me), 96.76 (d, ²J(C—P) 6.6 Hz, *C* Me), 100.51 (d, ¹J(C—P) 57 Hz, C—P), 129.6 (d, ³J(C—P) 5.7 Hz, CH (Ph)), 138.72 (d, ²J(C—P) 18.2 Hz, C ipso); mass spectrum: m/z 538 (M⁺, 100%).

1,4-Bis(3,4-dimethylphosphacymantren-2-yl) benzene **7**

Phosphole 1 (1g, 3×10^{-3} mol), Mn₂ (CO)₁₀ (1.2 g, 3×10^{-3} mol), and toluene (25 mL) were heated at 150°C for 2 h in an autoclave under 25 bars of carbon monoxide. After evaporation, the organic residue was chromatographed with hexane/CH₂Cl₂ 90/10. 3,4-Dimethylphosphacymantrene **8** was first eluted (ca. 0.2 g). Then, **7** was recovered (0.85g, 50%).

³¹P NMR (C₆D₆): δ –38.13 (major), –37.64 (minor); ¹H NMR (C₆D₆) major: δ 1.61 (s, 6H, Me), 1.67 (d, ⁴J(H—P) 1.6 Hz, 6H, Me), 3.93 (d, ²J(H—P) 35.3 Hz, 2H, CH—P), 6.95 (s, 4H, Ph); ¹³C NMR (C₆D₆) major: δ 12.86 (s, Me), 15.25 (s, Me), 95.00 (d, ¹J(C—P) 62.4 Hz, CH—P), 110.48 (d, ²J(C—P) 7.1 Hz, Me-C), 111.34 (d, ²J(C—P) ~ 3.5 Hz, Me-C), 119.25 (d, ¹J(C—P) 59.4 Hz, C—P), 130.05 (d, ³J(C—P) 5.9 Hz, CH (Ph)), 134.92 (d, ²J(C—P) 17.5 Hz, C ipso), 224.21 (s, CO); IR (decalin): ν (CO) 2085 (w), 2015 (s), 1987 (s), 1950 (sh), 1940 (vs); mass spectrum: m/z 574 (M⁺, 19%), 490 (M⁺-3CO, 100%), 406 (M⁺-6CO, 87%); Anal. Calcd. for C₂₄H₁₈

 $Mn_2O_6P_2$: C, 50.22; H, 3.16; Found: C, 49.91; H, 3.56.

References and Notes

- [1] F. Mathey, F. Mercier, C. Charrier, J. Fischer, A. Mitschler, J. Am. Chem. Soc., 103, 1981, 4595.
- [2] F. Mathey, F. Mercier, F. Nief, J. Fischer, A. Mitschler, J. Am. Chem. Soc., 104, 1982, 2077.
- [3] C. Charrier, H. Bonnard, F. Mathey, J. Org. Chem. 47, 1982, 2376.
- [4] F. Mercier, F. Mathey, J. Organometal. Chem., 263, 1984, 55.
- [5] Ph. Le Goff, F. Mathey, L. Ricard, J. Org. Chem., 54, 1989, 4754.
- [6] This question is more thoroughly discussed in: F. Mathey, Chem. Rev., 88, 1988, 429.
- [7] F. Mercier, S. Holand, F. Mathey, J. Organometal. Chem., 316, 1986, 271.
- [8] S. Holand, F. Mathey, Organometallics, 7, 1988, 1796.
- [9] H. Gilman, W. Langham, F. W. Moore, J. Am. Chem. Soc., 62, 1940, 2327.
- [10] C. Charrier, F. Mathey, *Tetrahedron Lett.*, 28, 1987, 5025; G.A. Gray, J. H. Nelson, Org. Magn. Reson., 14, 1980, 14.
- [11] F. Mathey, A. Mitschler, R. Weiss, J. Am. Chem. Soc., 100, 1978, 5748.
- [12] F. Mathey, J. Organometal. Chem., 139, 1977, 77.
- [13] The high deshielding of the CH₂ bridge is characteristic of the norbornadiene skeleton. See E. Lippmaa, T. Pehk, J. Passivirta, N. Behkova, A. Ploté, Org. Magn. Reson. 2, 1970, 581.